Solution to Class Exercise 5

1. Determine the mass and the center of mass of the thin solid region bounded in the first quadrant bounded by the coordinate axes and the line x + 2y = 1. The density of the solid is $\delta(x, y) = x$.

Solution. The mass of the region is

$$\iint_D x \, dA = \int_0^1 \int_0^{(1-x)/2} x \, dy \, dx = \frac{1}{12}$$

Next,

$$M_y = \iint_D x^2 \, dy \, dx = \int_0^1 \int_0^{(1-x)/2} x^2 \, dy \, dx = \frac{1}{24}$$

Also,

$$M_x = \iint_D yx \, dA = \int_0^1 \int_0^{(1-x)/2} xy \, dy dx = \frac{1}{96} \; .$$

The center of mass of this region is

$$(\bar{x}, \bar{y}) = \frac{1}{M}(M_y, M_x) = \left(\frac{1}{2}, \frac{1}{8}\right)$$

2. Let Ω be the region bounded between the surface $z = 9 - x^2 - y^2$ and z = 5. Express

$$\iiint_{\Omega} f(x,y,z) \, dV$$

in cylindrical and spherical coordinates.

Solution. These two surfaces intersect at (x, y, 5) where (x, y) belongs to the circle $x^2 + y^2 = 4$. In cylindrical coordinates,

$$\iiint_{\Omega} f \, dV = \int_0^{2\pi} \int_0^2 \int_5^{9-r^2} f(r\cos\theta, r\sin\theta, z) r \, dz dr d\theta \; .$$

Any ray of angle $\varphi \in [0, \varphi_0], \varphi_0 = \tan^{-1} 2/5$, hits z = 5 first and then $z = 9 - x^2 - y^2$. In spherical coordinates,

$$\iiint_{\Omega} f \, dV = \int_0^{2\pi} \int_0^{\varphi_0} \int_{5/\cos\varphi}^{\rho_0(\varphi)} f(\rho \sin\varphi \cos\theta, \rho \sin\varphi \sin\theta, \rho \cos\varphi) \rho^2 \sin\varphi \, d\rho d\varphi d\theta$$

where $\rho_0(\varphi)$ is the positive solution of $\rho \cos \varphi = 9 - \rho^2 \sin^2 \varphi$ for each fixed $\varphi \in [0, \varphi_0]$, i.e.

$$\rho_0(\varphi) = \frac{-\cos\varphi + \sqrt{\cos^2\varphi + 36\sin^2\varphi}}{2\sin^2\varphi}$$

3. The same problem as in (2) where Ω is replaced by H, the region bounded by $z = 9 - x^2 - y^2$, z = 5 and z = 0.

Solution. Need to consider the region over the disk $x^2 + y^2 \le 4$ and over the annulus $4 \le x^2 + y^2 \le 9$ separately. In cylindrical coordinates,

$$\iiint_{H} f \, dV = \int_{0}^{2\pi} \int_{2}^{3} \int_{0}^{9-r^{2}} f(r\cos\theta, r\sin\theta, z) r \, dz \, dr d\theta + \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{5} f(r\cos\theta, r\sin\theta, z) r \, dz \, dr d\theta$$

In spherical coordinates,

$$\iiint_{H} f \, dV = \int_{0}^{2\pi} \int_{\varphi_{0}}^{\pi/2} \int_{0}^{\rho_{0}(\varphi)} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{\varphi_{0}} \int_{0}^{5/\cos \varphi} f(\cdot, \cdot, \cdot) \rho^{2} \sin \varphi \, d\rho d\varphi d\theta + \int_{0}^{2\pi} \int_{0}^{2\pi}$$